26 research outputs found

    Transdermal Delivery of Functional Collagen \u3cem\u3eVia\u3c/em\u3e Polyvinylpyrrolidone Microneedles

    Get PDF
    Collagen makes up a large proportion of the human body, particularly the skin. As the body ages, collagen content decreases, resulting in wrinkled skin and decreased wound healing capabilities. This paper presents a method of delivering type I collagen into porcine and human skin utilizing a polyvinylpyrrolidone microneedle delivery system. The microneedle patches were made with concentrations of 1, 2, 4, and 8% type I collagen (w/w). Microneedle structures and the distribution of collagen were characterized using scanning electron microscopy and confocal microscopy. Patches were then applied on the porcine and human skin, and their effectiveness was examined using fluorescence microscopy. The results illustrate that this microneedle delivery system is effective in delivering collagen I into the epidermis and dermis of porcine and human skin. Since the technique presented in this paper is quick, safe, effective and easy, it can be considered as a new collagen delivery method for cosmetic and therapeutic applications

    Interfacial Stresses on Droplet Interface Bilayers Using Two Photon Fluorescence Lifetime Imaging Microscopy

    Full text link
    Response of lipid bilayers to external mechanical stimuli is an active area of research with implications for fundamental and synthetic cell biology. However, there is a lack of tools for systematically imposing mechanical strains and non-invasively mapping out interfacial (membrane) stress distributions on lipid bilayers. In this article, we report a miniature platform to manipulate model cell membranes in the form of droplet interface bilayers (DIBs), and non-invasively measure spatio-temporally resolved interfacial stresses using two photon fluorescence lifetime imaging of an interfacially active molecular flipper (Flipper-TR). We established the effectiveness of the developed framework by investigating interfacial stresses accompanying three key processes associated with DIBs: thin film drainage between lipid monolayer coated droplets, bilayer formation, and bilayer separation. Interestingly, the measurements also revealed fundamental aspects of DIBs including the existence of a radially decaying interfacial stress distribution post bilayer formation, and the simultaneous build up and decay of stress respectively at the bilayer corner and center during bilayer separation. Finally, utilizing interfacial rheology measurements and MD simulations, we also reveal that the tested molecular flipper is sensitive to membrane fluidity that changes with interfacial stress - expanding the scientific understanding of how molecular motors sense stress.Comment: 8 pages, 4 figure

    Scaffold proteins LACK and TRACK as potential drug targets in kinetoplastid parasites: Development of inhibitors

    Get PDF
    Parasitic diseases cause similar to 500,000 deaths annually and remain a major challenge for therapeutic development. Using a rational design based approach, we developed peptide inhibitors with anti-parasitic activity that were derived from the sequences of parasite scaffold proteins LACK (Leishmania's receptor for activated C-kinase) and TRACK (Trypanosoma receptor for activated C-kinase). We hypothesized that sequences in LACK and TRACK that are conserved in the parasites, but not in the mammalian ortholog, RACK (Receptor for activated C-kinase), may be interaction sites for signaling proteins that are critical for the parasites' viability. One of these peptides exhibited leishmanicidal and trypanocidal activity in culture. Moreover, in infected mice, this peptide was also effective in reducing parasitemia and increasing survival without toxic effects. The identified peptide is a promising new anti-parasitic drug lead, as its unique features may limit toxicity and drug-resistance, thus overcoming central limitations of most anti-parasitic drugs. (C) 2016 The Authors. Published by Elsevier Ltd on behalf of Australian Society for Parasitology.National Institutes of HealthStanford Univ, Sch Med, Dept Chem & Syst Biol, Stanford, CA 94305 USAUniv Sao Paulo, Inst Quim, Dept Bioquim, BR-05508 Sao Paulo, SP, BrazilMcGill Univ, Res Inst, Natl Reference Ctr Parasitol, Montreal, PQ, CanadaUniv Autonoma Yucatan, Ctr Invest Reg Dr Hideyo Noguchi, Parasitol Lab, Merida, Yucatan, MexicoStanford Univ, Biomat & Adv Drug Delivery Lab, Stanford, CA 94305 USAUniv Estadual Campinas, Inst Chem, Campinas, SP, BrazilUniv Fed Sao Paulo, Dept Ciencias Biol, Campus Diadema, Sao Paulo, BrazilMcGill Univ, Inst Parasitol, Quebec City, PQ, CanadaMcGill Univ, Ctr Host Parasite Interact, Quebec City, PQ, CanadaUniv Fed Sao Paulo, Dept Ciencias Biol, Campus Diadema, Sao Paulo, BrazilNIH: TW008781-01C-IDEANIH: AI078505Web of Scienc

    Vision, challenges and opportunities for a Plant Cell Atlas

    Get PDF
    With growing populations and pressing environmental problems, future economies will be increasingly plant-based. Now is the time to reimagine plant science as a critical component of fundamental science, agriculture, environmental stewardship, energy, technology and healthcare. This effort requires a conceptual and technological framework to identify and map all cell types, and to comprehensively annotate the localization and organization of molecules at cellular and tissue levels. This framework, called the Plant Cell Atlas (PCA), will be critical for understanding and engineering plant development, physiology and environmental responses. A workshop was convened to discuss the purpose and utility of such an initiative, resulting in a roadmap that acknowledges the current knowledge gaps and technical challenges, and underscores how the PCA initiative can help to overcome them.</jats:p

    PEG/Dextran Double Layer Influences Fe Ion Release and Colloidal Stability of Iron Oxide Nanoparticles

    Get PDF
    Abstract Despite preliminary confidence on biosafety of polymer coated iron oxide nanoparticles (SPIONs), toxicity concerns have hampered their clinical translation. SPIONs toxicity is known to be due to catalytic activity of their surface and release of toxic Fe ions originating from the core biodegradation, leading to the generation of reactive oxygen species (ROS). Here, we hypothesized that a double-layer polymeric corona comprising of dextran as an interior, and polyethylene glycol (PEG) as an exterior layer better shields the core SPIONs. We found that ROS generation was cell specific and depended on SPIONs concentration, although it was reduced by sufficient PEG immobilization or 100 µM deferoxamine. 24 h following injection, PEGylated samples showed reduction of biodistribution in liver, heterogenous biodistribution profile in spleen, and no influence on NPs blood retention. Sufficient surface masking or administration of deferoxamine could be beneficial strategies in designing and clinical translation of future biomedical SPIONs

    Solvent Microenvironments and Copper Binding Alters the Conformation and Toxicity of a Prion Fragment

    No full text
    <div><p>The secondary structures of amyloidogenic proteins are largely influenced by various intra and extra cellular microenvironments and metal ions that govern cytotoxicity. The secondary structure of a prion fragment, PrP(111-126), was determined using circular dichroism (CD) spectroscopy in various microenvironments. The conformational preferences of the prion peptide fragment were examined by changing solvent conditions and pH, and by introducing external stress (sonication). These physical and chemical environments simulate various cellular components at the water-membrane interface, namely differing aqueous environments and metal chelating ions. The results show that PrP(111-126) adopts different conformations in assembled and non-assembled forms. Aging studies on the PrP(111-126) peptide fragment in aqueous buffer demonstrated a structural transition from random coil to a stable β-sheet structure. A similar, but significantly accelerated structural transition was observed upon sonication in aqueous environment. With increasing TFE concentrations, the helical content of PrP(111-126) increased persistently during the structural transition process from random coil. In aqueous SDS solution, PrP(111-126) exhibited β-sheet conformation with greater α-helical content. No significant conformational changes were observed under various pH conditions. Addition of Cu<sup>2+</sup> ions inhibited the structural transition and fibril formation of the peptide in a cell free <i>in vitro</i> system. The fact that Cu<sup>2+</sup> supplementation attenuates the fibrillar assemblies and cytotoxicity of PrP(111-126) was witnessed through structural morphology studies using AFM as well as cytotoxicity using MTT measurements. We observed negligible effects during both physical and chemical stimulation on conformation of the prion fragment in the presence of Cu<sup>2+</sup> ions. The toxicity of PrP(111-126) to cultured astrocytes was reduced following the addition of Cu<sup>2+</sup> ions, owing to binding affinity of copper towards histidine moiety present in the peptide. </p> </div

    CD spectra of 20 µM PrP(111-126) with varying Cu<sup>2+</sup> concentrations (0, 0.3, 0.6, 0.9, 1.5, 1.8 mol. equiv) in PBS at 20 °C.

    No full text
    <p>(A) UV-CD and (B) visible-CD spectra of PrP(111-126) with 0 to 1.8 mole equivalent of Cu<sup>2+</sup>. (B, inset) intensity of 560 nm CD band vs. Cu<sup>2+</sup> concentration. (C) CD spectra of PrP(111-126) with or without sonication for 120 seconds in the presence of 1 mole equivalent Cu<sup>2+</sup>.</p

    Cell viability (MTT) assay.

    No full text
    <p>Monomeric and fibrillar form of PrP(111-126) and PrP(113-127) were treated to astrocyte cultures. (A) Cytotoxicity of monomers and fibrils at various concentrations of PrP(111-126) and at 25µM of PrP(113-127). (B) PrP(111-126) (20µM) in the presence of different concentrations of Cu<sup>2+</sup>and 25µM of PrP(113-127) with 25µM Cu<sup>2+</sup>.</p

    Morphology of fibrillar assemblies of the PrP

    No full text
    <p>(111-126). AFM height images of (A) PrP(111-126) and (B) PrP(111-126) in the presence of Cu<sup>2+</sup> ions. Height profiles of the fibrils for lines marked on the images: (C) PrP (111-126) and (D) PrP (111-126) with Cu<sup>2+</sup>. Scale bar represents 500nm.</p
    corecore